
Pyruvate Kinase Activation in Thalassemia

SITE Congress 2025 Friday, September 12, 2025 15:30–16:00

Welcome and Introduction

Maria Domenica Cappellini, MD, FRCP, FACP University of Milan, Ca' Granda Foundation IRCCS Maggiore Policlinico Hospital, Milan, Italy

Disclaimer

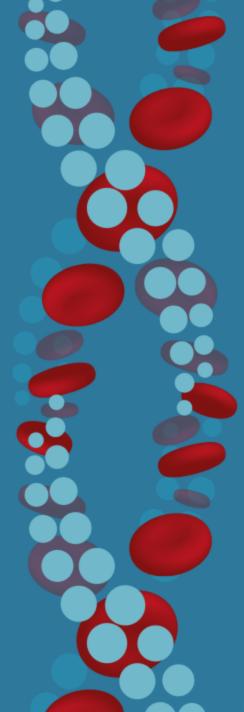
- This presentation is intended for scientific informational purposes only
- The speakers are presenting on behalf of Agios Pharmaceuticals, Inc.
- The ENERGIZE and ENERGIZE-T studies are funded by Agios Pharmaceuticals, Inc.
- Mitapivat is a first-in-class, allosteric activator of pyruvate kinase (PK) approved in the United States for the treatment of hemolytic anemia in adults with PK deficiency, and in the European Union and in the United Kingdom for the treatment of PK deficiency in adults; mitapivat is also approved in Saudi Arabia for the treatment of adult patients with non-transfusion-dependent and transfusion-dependent alpha- or beta-thalassemia. The safety and efficacy of mitapivat in other indications are under investigation and have not been established. There is no guarantee that mitapivat will receive health authority approvals or become commercially available in any country for the uses under investigation

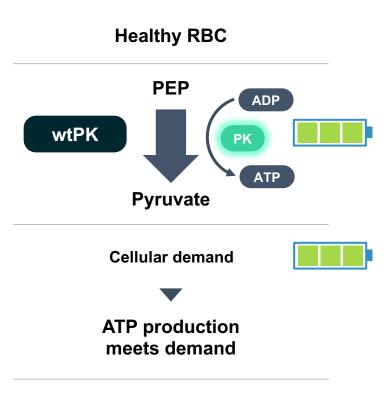
Disclosures

- Both speakers are receiving an honorarium for this presentation
- Maria Domenica Cappellini, MD, FRCP, FACP: Received advisory board fees from Celgene Corp (Bristol Myers Squibb), CRISPR Therapeutics, Novo Nordisk, Pharmacosmos, Sanofi Genzyme, and Vertex
- Ali T. Taher, MD, PhD, FRCP: Received consultancy fees and research funding from Agios Pharmaceuticals, Bristol Myers Squibb (Celgene), Pharmacosmos, and Vifor; and consultancy fees from Novo Nordisk

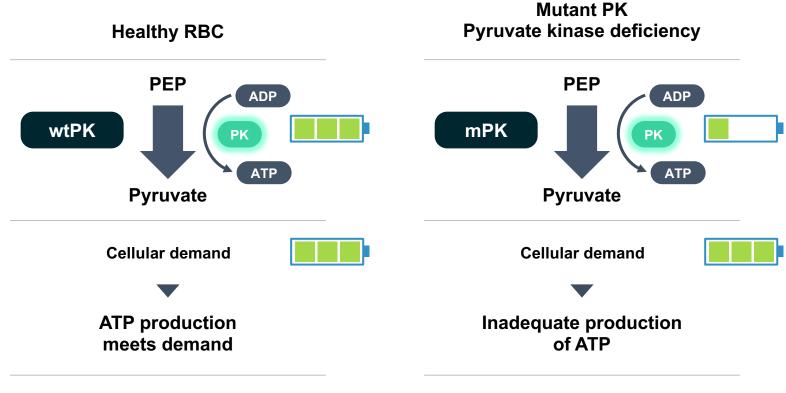
Faculty

ENERGIZE Study

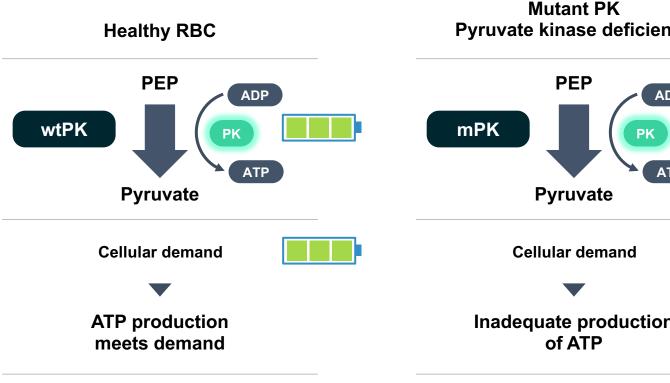

Ali T. Taher, MD, PhD, FRCP American University of Beirut Medical Center, Beirut, Lebanon


ENERGIZE-T Study

Maria Domenica Cappellini,
MD, FRCP, FACP
University of Milan, Ca' Granda Foundation
IRCCS Maggiore Policlinico Hospital,
Milan, Italy

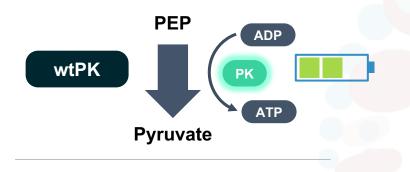

Activation of Pyruvate Kinase with Mitapivat

Pyruvate kinase (PK) activation represents a unique mechanism of action with the potential to address a broad range of hemolytic anemias



Pyruvate kinase (PK) activation represents a unique mechanism of action with the potential to address a broad range of hemolytic anemias

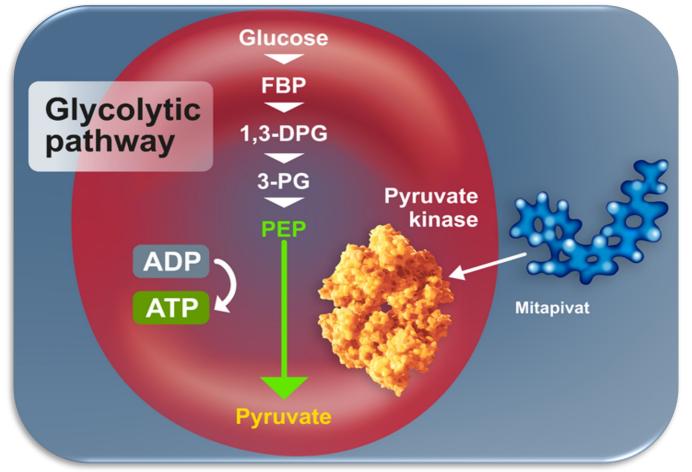
PK mutations decrease PK stability, ATP generation, and RBC membrane integrity, and increase RBC destruction, leading to chronic hemolytic anemia


Pyruvate kinase (PK) activation represents a unique mechanism of action with the potential to address a broad range of hemolytic anemias

Pyruvate kinase deficiency ADP ATP **Inadequate production**

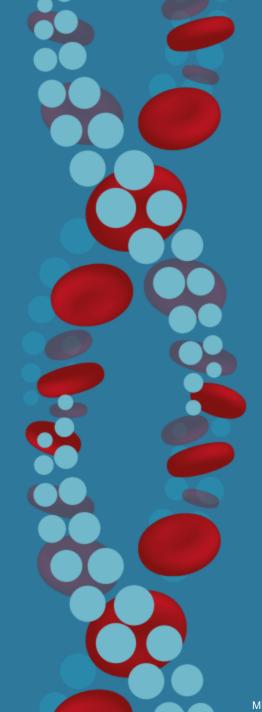
PK mutations decrease PK stability, ATP generation, and RBC membrane integrity and increase RBC destruction. leading to chronic hemolytic anemia

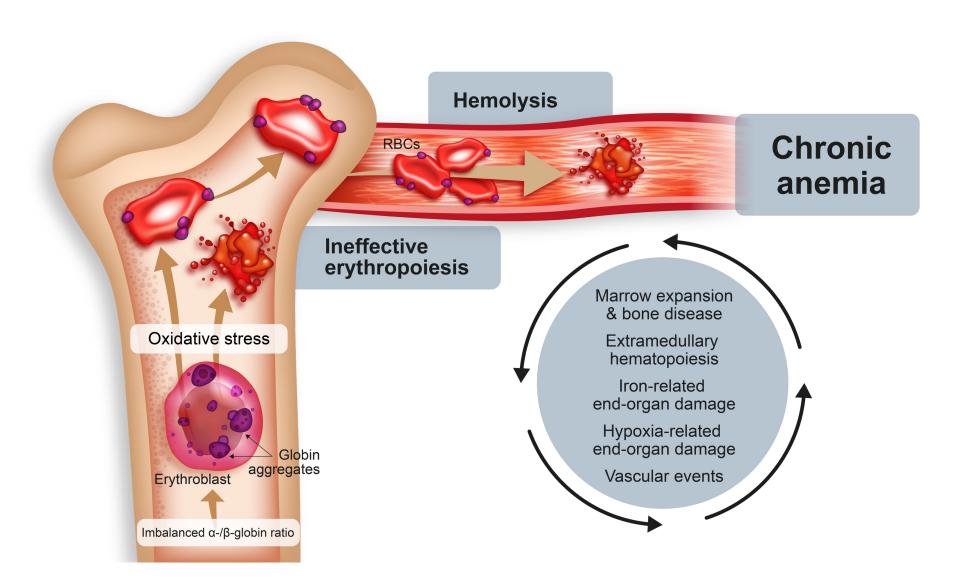
Wild-type PK Other hemolytic anemias



Increased demand of ATP

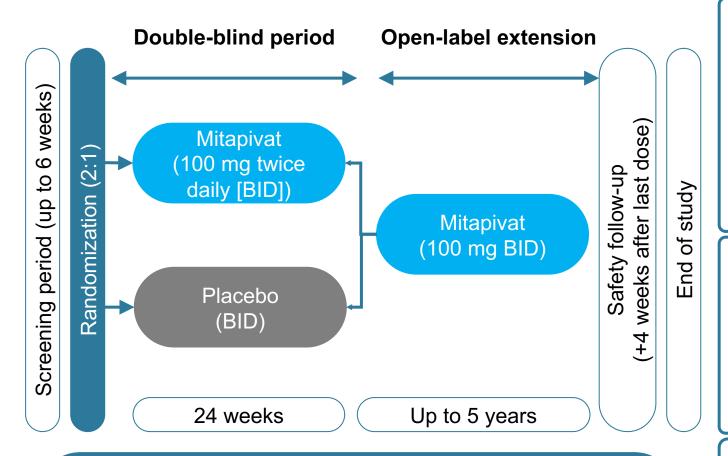
In many other hemolytic anemias, there is an increase in ATP demand and impaired ATP production, leading to damage and premature death of RBCs, hemolysis, and anemia


Mitapivat enhances cellular energy supply to support increased metabolic demands of thalassemic red blood cells (RBCs)


Mitapivat is an allosteric activator of pyruvate kinase (PK), including the red cell-specific (PKR) and M2 (PKM2) isoforms, which act in glycolysis to generate ATP^{1,2}

ENERGIZE Phase 3 Study

Ali T. Taher, MD, PhD, FRCP American University of Beirut Medical Center, Beirut, Lebanon



Pathophysiology of thalassemia

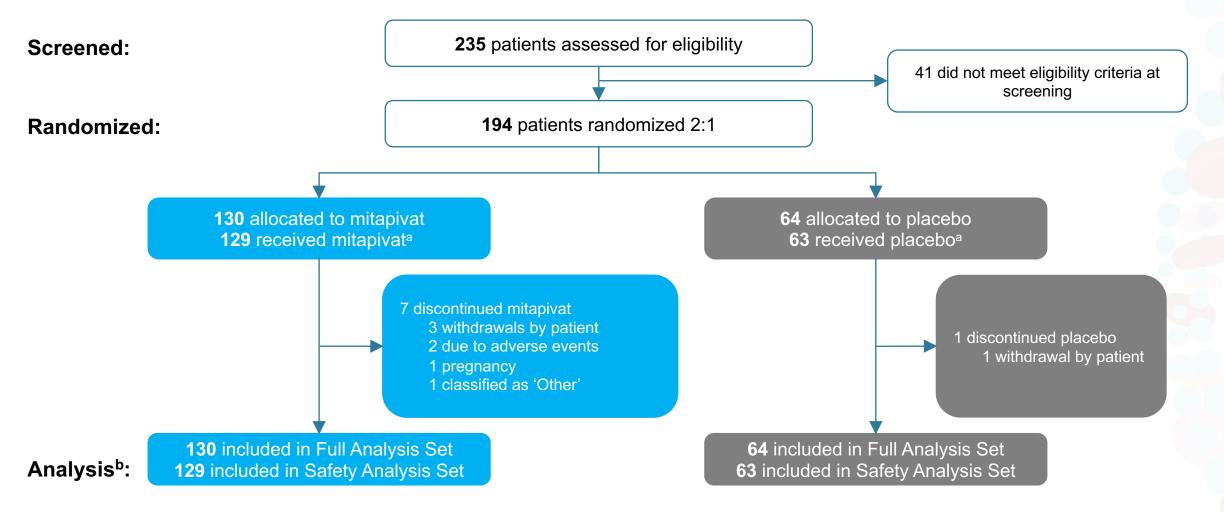
ENERGIZE: A phase 3 study of mitapivat in adults with α - or β -NTDT

Primary endpoint: Hemoglobin (Hb) response, defined as an increase of ≥1.0 g/dL in average Hb concentration from Week 12 through Week 24, compared with baseline

Key inclusion criteria

- ≥18 years of age at time of informed consent
- β -thalassemia \pm α -globin mutations, HbE/ β -thalassemia, or α -thalassemia (HbH disease)
- Non-transfusion-dependent (≤5 RBC units transfused during the 24-week period before randomization and no RBC transfusions ≤8 weeks before informed consent and during screening)
- Hb ≤10.0 g/dL

Key exclusion criteria


- Prior exposure to gene therapy or hematopoietic stem cell transplant
- Homozygous or heterozygous for HbS or HbC
- Receiving treatment with luspatercept or a hematopoietic stimulating agent (last dose must be received ≥18 weeks before randomization)

Randomization stratification factors

- Baseline Hb (≤9.0 g/dL or 9.1–10.0 g/dL)
- Thalassemia genotype (α-thalassemia/HbH or β-thalassemia)

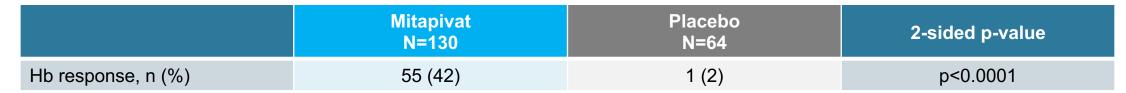
Patient flowchart: 194 patients were randomized in the study

Reprinted from The Lancet, Taher AT et al. Mitapivat in adult patients with non-transfusion-dependent α - or β -thalassaemia (ENERGIZE): a phase 3, international, randomised, double-blind, placebo-controlled trial, Copyright (2025), with permission from Elsevier. ^aOne patient in each treatment arm was randomized but not dosed. ^bFull Analysis Set: all patients randomized. Patients are classified according to the randomized treatment group. Safety Analysis Set: all patients who received ≥ 1 dose of study treatment. If a patient randomized to placebo received ≥ 1 dose of mitapivat in the double-blind period, then the patient was classified to the mitapivat arm.

Taher AT et al. Lancet 2025;406:33–42.

MIT-IT-0012 / Aug 2025

Baseline demographics and disease characteristics were generally balanced between treatment arms


Demographics and disease characteristics	Mitapivat (N=130)	Placebo (N=64)
Age, years, mean (range)	42.4 (19–68)	38.9 (18–69)
Female, n (%)	84 (65)	39 (61)
Thalassemia type, n (%) α-thalassemia/HbH disease β-thalassemia	42 (32) 88 (68)	20 (31) 44 (69)
Transfusion burden ^a , n (%) 0 1–2 3–5 >5	114 (88) 10 (8) 6 (5) 0	54 (84) 7 (11) 3 (5) 0
Previous splenectomy ^b , n (%)	47 (36)	25 (39)
Previous cholecystectomyb, n (%)	45 (35)	16 (25)
Received iron chelation ^c , n (%)	46 (35)	22 (34)
Hb, mean (SD); n, g/dL	8.30 (1.08); n=130	8.39 (1.01); n=64
Indirect bilirubin, mean (SD); n, µmol/L	29.03 (24.57); n=130	27.28 (19.30); n=62
LDH, mean (SD); n, U/L	303.05 (157.16); n=130	309.15 (179.97); n=64
Haptoglobind, mean (SD); n, g/L	0.21 (0.26); n=127	0.29 (0.41); n=63
Reticulocyte percentage, mean (SD); n, %	7 (6); n=122	6 (5); n=58
Erythropoietin, mean (SD); n, IU/L	135.21 (222.63); n=118	197.05 (639.31); n=55

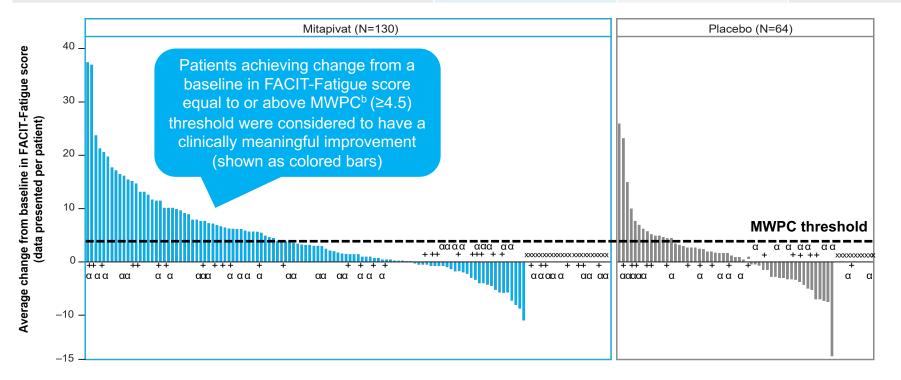
Reprinted from The Lancet, Taher AT et al. Mitapivat in adult patients with non-transfusion-dependent α- or β-thalassaemia (ENERGIZE): a phase 3, international, randomised, double-blind, placebo-controlled trial, Copyright (2025), with permission from Elsevier. ^aTotal number of RBC units transfused in the 24-week period before randomization. ^bAs recorded in medical/surgical history eCRF. ^cAs recorded in disease characteristics eCRF. 'Yes' if a patient received chelation therapy within 1 year (365 days) before randomization. ^dFor cases reported as '<0.1', a haptoglobin value of 0.099 was used for the summary. eCRF, electronic case report form; Hb, hemoglobin; HbH, hemoglobin H; LDH, lactate dehydrogenase; RBC, red blood cell; SD, standard deviation. Taher AT et al. Lancet 2025;406:33–42.

Mitapivat demonstrated a statistically significant improvement in Hb response^a vs placebo

Primary endpoint

 $\alpha = \alpha$ -thalassemia/HbH disease

- + = Baseline Hb category: 9.1–10 g/dL
- x = Patient with missing baseline or with no assessments from Week 12 through Week 24


Reprinted from The Lancet, Taher AT et al. Mitapivat in adult patients with non-transfusion-dependent α- or β-thalassaemia (ENERGIZE): a phase 3, international, randomised, double-blind, placebo-controlled trial, Copyright (2025), with permission from Elsevier. Analysis conducted on Full Analysis Set. Each bar represents an individual patient in the Full Analysis Set who was randomly assigned to receive either mitapivat or placebo. ^aA Hb response was defined as an increase of ≥1.0 g/dL in average Hb concentration from Week 12 through Week 24, compared with baseline. Hb, hemoglobin; HbH, hemoglobin H; SD, standard deviation. Taher AT et al. Lancet 2025;406:33–42.

Key secondary endpoint

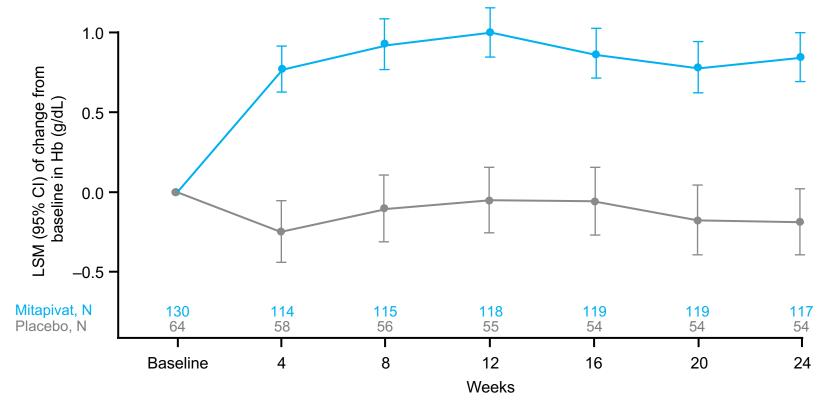
	Mitapivat (N=130)	Placebo (N=64)	LSM difference	2-sided p-value
FACIT-Fatigue score at baseline, mean ^a	36.10	36.41	-	-
FACIT-Fatigue score, LSM change from baseline in average of Week 12 through Week 24 (95% CI)	4.85 (3.41, 6.30)	1.46 (-0.43, 3.34)	3.40 (1.21, 5.59)	p=0.0026

 $\alpha = \alpha$ -thalassemia/HbH disease

- + = Baseline Hb category: 9.1–10 g/dL
- x = Patient with missing baseline or with no assessments from Week 12 through Week 24

Reprinted from The Lancet, Taher AT et al. Mitapivat in adult patients with non-transfusion-dependent α- or β-thalassaemia (ENERGIZE): a phase 3, international, randomised, double-blind, placebo-controlled trial, Copyright (2025), with permission from Elsevier. Each bar represents an individual patient in the Full Analysis Set who was randomly assigned to receive either mitapivat or placebo. all the general population, mean FACIT-Fatigue score reported in the literature was 43.6.1 bAnchor-based analysis was conducted to define the threshold of FACIT-Fatigue score change associated with a meaningful change. A change of ≥4.5 points from Week 12 through Week 24 was considered clinically meaningful for a patient. CI, confidence interval; FACIT-Fatigue, Functional Assessment of Chronic Illness Therapy–Fatigue Scale; Hb, hemoglobin; HbH, hemoglobin H; LSM, least-squares mean; MWPC, meaningful within person change. 1. Cella D et al. Cancer 2002;94:528–38.

Taher AT et al. Lancet 2025;406:33–42.


MIT-IT-0012 / Aug 2025

Mitapivat demonstrated a statistically significant improvement in change from baseline in average Hb concentration from Weeks 12 to 24 vs placebo

Key secondary endpoint

	Mitapivat N=130	Placebo N=64	LSM difference	2-sided p-value
Hb, LSM (95% CI) change from baseline in average of Weeks 12 to 24, g/dL	0.86 (0.73, 0.99)	-0.11 (-0.28, 0.07)	0.96 (0.78, 1.15)	p<0.0001

Reprinted from The Lancet, Taher AT et al. Mitapivat in adult patients with non-transfusion-dependent α- or β-thalassaemia (ENERGIZE): a phase 3, international, randomised, double-blind, placebo-controlled trial, Copyright (2025), with permission from Elsevier. Analysis conducted on Full Analysis Set. CI, confidence interval; Hb, hemoglobin; LSM, least-squares mean. Taher AT et al. Lancet 2025;406:33–42.

MIT-IT-0012 / Aug 2025

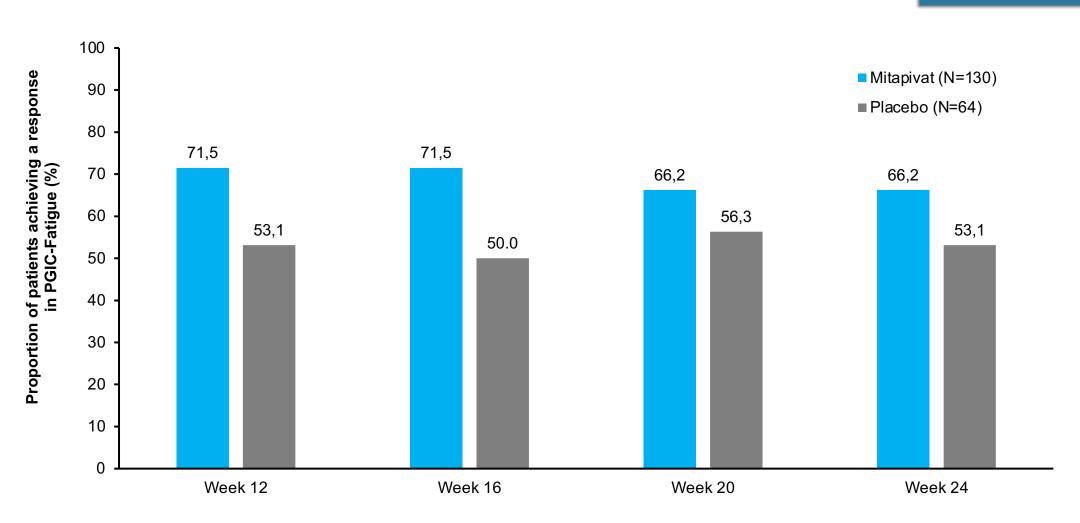
Secondary endpoint

6MWT

- In healthy individuals aged 20–50 years (a similar age range to the ENERGIZE cohort), mean (± SD)
 6MWT distances reported in the literature are 593±57 m for females and 638±44 m for males^{1,2}
- Patients in the mitapivat arm had greater improvements in the 6MWT than those in the placebo arm at Week 24

	Mitapivat (N=130)	Placebo (N=64)	LSM difference	Literature- reported MCID threshold ^a
6MWT distance at baseline, mean, m ^b	422.22	412.43	-	_
6MWT distance, LSM change from baseline to Week 24 (95% CI) ^c	30.48 (19.31, 41.64)	7.11 (-7.39, 21.62)	23.36 (6.90, 39.83)	≥20

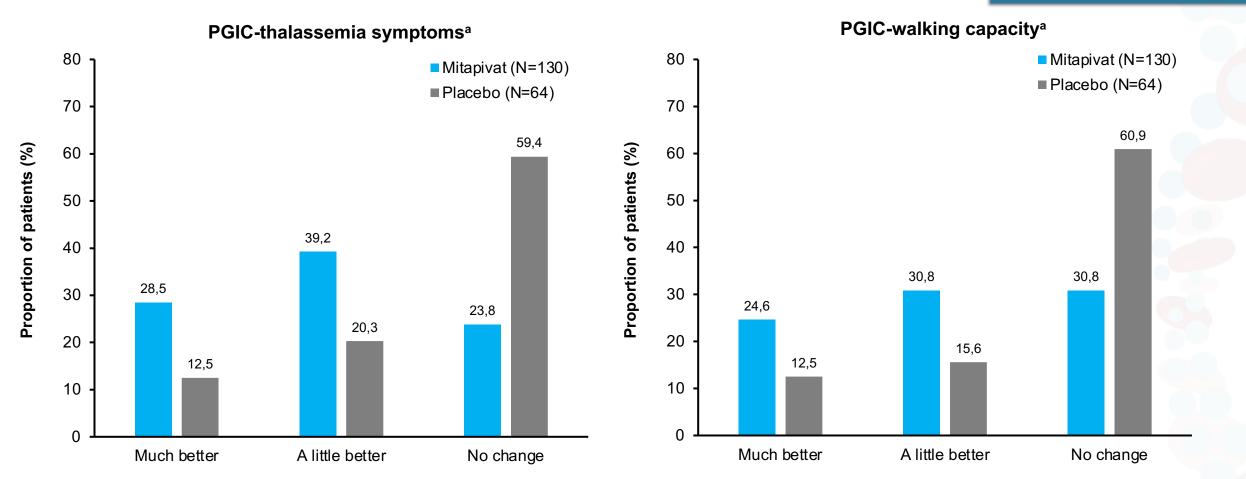
^aMCID represents the smallest improvement considered valuable by a patient; in this case, MCID in 6MWT was measured by an increased ability to walk by 20 m or more, as reported in the literature. ² bIn healthy individuals aged 20–50 years, the mean (±SD) 6MWT distances reported in the literature were 593±57 m for females and 638±44 for males. ¹ cIn the mitapivat arm, 107 patients had 6MWT data at Week 24. In the placebo arm, 57 patients had 6MWT data at Week 24. 6MWT, 6-minute walk test; CI, confidence interval; LSM, least-squares mean; MCID, minimal clinically important difference; SD, standard deviation. 1. St. Lezin E et al. Transfusion 2019;59:1934–43; 2. Chetta A et al. Respir Med 2006;100:1573–78.


Taher AT et al. Lancet 2025;406:33–42.

MIT-IT-0012 / Aug 2025

A higher proportion of patients receiving mitapivat reported improvements in fatigue as per PGIC vs those receiving placebo^a

Secondary endpoint


A patient was considered to have achieved a response at each visit if their baseline PGIS and corresponding PGIC met one of the following conditions: if the PGIS at baseline was 'None' or 'Mild', and PGIC at the visit was 'No Change', 'A Little Better', or 'Much Better'; if the PGIS at baseline was 'Moderate' or 'Severe', and PGIC at the visit was 'A Little Better' or 'Much Better'. a Statistical significance of PGIC-Fatigue score vs baseline not calculated as part of the study analysis. PGIC, Patient Global Impression of Change; PGIS, Patient Global Impression of Severity.

Kuo KHM et al. Poster presentation at the European Hematology Association Congress 2024, Madrid.

A higher proportion of patients receiving mitapivat reported improvements in thalassemia symptoms and walking capacity as per PGIC

Secondary endpoint

Summary of safety

Safety

Patients, n (%)	Mitapivat (N=129)	Placebo (N=63)
Any adverse events (AEs)	107 (83)	50 (79)
Grade ≥3 AEs	18 (14)	2 (3)
Treatment-related AEs	56 (43)	13 (21)
Grade ≥3 treatment-related AEs	5 (4)	0
Serious AEs	8 (6)	0
Serious treatment-related AEs	0	0
AEs leading to discontinuation of study drug ^a	4 (3)	0
AEs leading to dose reduction	7 (5)	2 (3)
AEs leading to interruption of study drug	2 (2)	1 (2)
AEs leading to death	0	0

Reprinted from The Lancet, Taher AT et al. Mitapivat in adult patients with non-transfusion-dependent α- or β-thalassaemia (ENERGIZE): a phase 3, international, randomised, double-blind, placebo-controlled trial, Copyright (2025), with permission from Elsevier. Analysis Conducted on Safety Analysis Set. The denominator used to calculate percentages is N, the number of patients in the Safety Analysis Set within each treatment arm. The severity of all AEs, including clinically significant laboratory abnormalities, was graded by the Investigator according to version 4.03 of the National Cancer Institute Common Terminology Criteria for Adverse Event on a 5-point severity scale (Grades 1–5). ^aAEs that led to discontinuation of study drug with mitapivat were thrombocytopenia, arthralgia, abdominal distension, and 5 concurrent laboratory AEs (alanine aminotransferase increase, aspartate aminotransferase increase, blood bilirubin increase, and international normalized ratio increase) (all in 1 patient each).

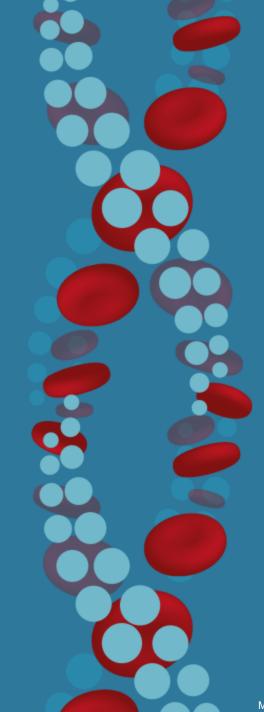
Most frequently reported (≥10%) AEs

Safety

Preferred term, n (%)	Mitapivat (N=129)	Placebo (N=63)
Headache Any Grade Grade ≥3	29 (22) 0	6 (10) 0
Initial insomnia ^a Any Grade Grade ≥3	18 (14) 1 (1)	3 (5) 0
Nausea Any Grade Grade ≥3	15 (12) 0	5 (8) 0
Upper respiratory tract infection Any Grade Grade ≥3	14 (11) 0	4 (6) 0

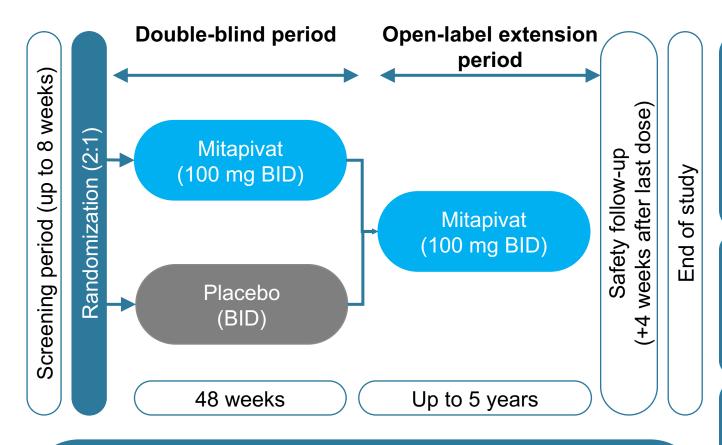
Reprinted from The Lancet, Taher AT et al. Mitapivat in adult patients with non-transfusion-dependent α- or β-thalassaemia (ENERGIZE): a phase 3, international, randomised, double-blind, placebo-controlled trial, Copyright (2025), with permission from Elsevier. Analysis conducted on Safety Analysis Set. Summarized in order of decreasing frequency of patients with events based on the frequencies observed in any Grade for the mitapivat arm. The denominator used to calculate percentages is N, the number of patients in the Safety Analysis Set within each treatment arm. The severity of all AEs, including clinically significant laboratory abnormalities, was graded by the Investigator according to version 4.03 of the National Cancer Institute Common Terminology Criteria for Adverse Event on a 5-point severity scale (Grades 1–5). alnitial insomnia refers to insomnia that occurs early during the course of a night (ie, difficulty initiating sleep). AE, adverse event.

Taher AT et al. Lancet 2025;406:33–42.



ENERGIZE¹: Summary

- This was the first global phase 3 study to enroll patients with α-thalassemia in addition to β-thalassemia¹
- The primary endpoint and key secondary endpoints were met, with statistically significant improvements
 in Hb and fatigue with mitapivat vs placebo¹
- Functional improvement in patients with mitapivat, measured by the 6MWT, exceeded a previously reported meaningful change threshold from the literature^{1–3}
- A higher proportion of patients reported improved fatigue, disease symptoms, and walking capacity via PGIC with mitapivat vs placebo³
- The most frequently reported AEs with mitapivat were headache, initial insomnia, nausea, and upper respiratory tract infection¹
- Mitapivat was generally well tolerated in this study, with a low treatment discontinuation rate¹


ENERGIZE-T Phase 3 Study

Maria Domenica Cappellini, MD, FRCP, FACP University of Milan, Ca' Granda Foundation IRCCS Maggiore Policlinico Hospital, Milan, Italy

ENERGIZE-T: A phase 3 study of mitapivat in adults with transfusion-dependent α - or β -thalassemia

Primary endpoint: Transfusion reduction response (TRR), defined as a ≥50% reduction in transfused RBC units and a reduction in ≥2 units of transfused RBCs in any consecutive 12-week period through Week 48 compared with baseline

Key inclusion criteria

- ≥18 years of age at time of informed consent
- Documented diagnosis of thalassemia (β-thalassemia ± α-globin mutations, HbE/β-thalassemia, or α-thalassemia/HbH disease)
- Transfusion-dependent (6–20 RBC units transfused and a ≤6-week transfusion-free period during the 24-week period before randomization)
- If taking hydroxyurea, a stable hydroxyurea dose for ≥16 weeks before randomization

Key exclusion criteria

- Prior exposure to gene therapy or hematopoietic stem cell transplant
- Homozygous or heterozygous for HbS or HbC
- Receiving treatment with luspatercept or a hematopoietic stimulating agent (last dose must be received ≥36 weeks before randomization)

Randomization stratification factors

- Thalassemia genotype (patients who do not have a β^0 mutation at both alleles of the β -globin gene [non- β^0/β^0], including patients with HbE/ β -thalassemia and α -thalassemia/HbH disease; or patients who have a β^0 mutation at both alleles of the β -globin gene [β^0/β^0])
- Geographic region (North America and Europe, Asia-Pacific, and the rest of the world)

Endpoints

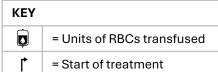
Primary endpoint:

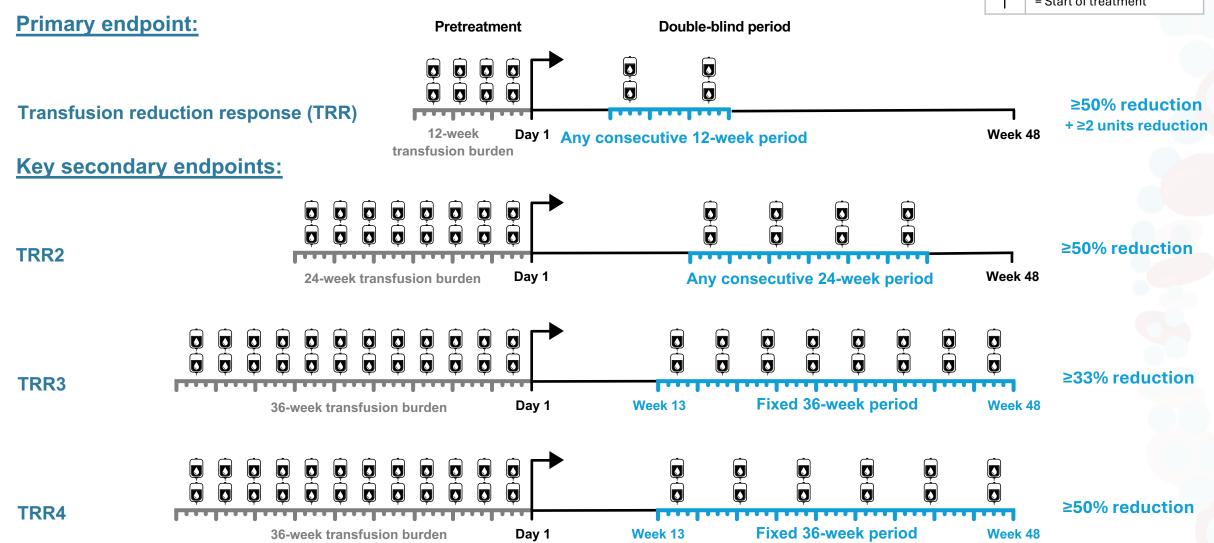
 Transfusion reduction response (TRR), defined as a ≥50% reduction in transfused RBC units and a reduction in ≥2 units of transfused RBCs in any consecutive 12-week period through Week 48 compared with baseline

Key secondary endpoints:

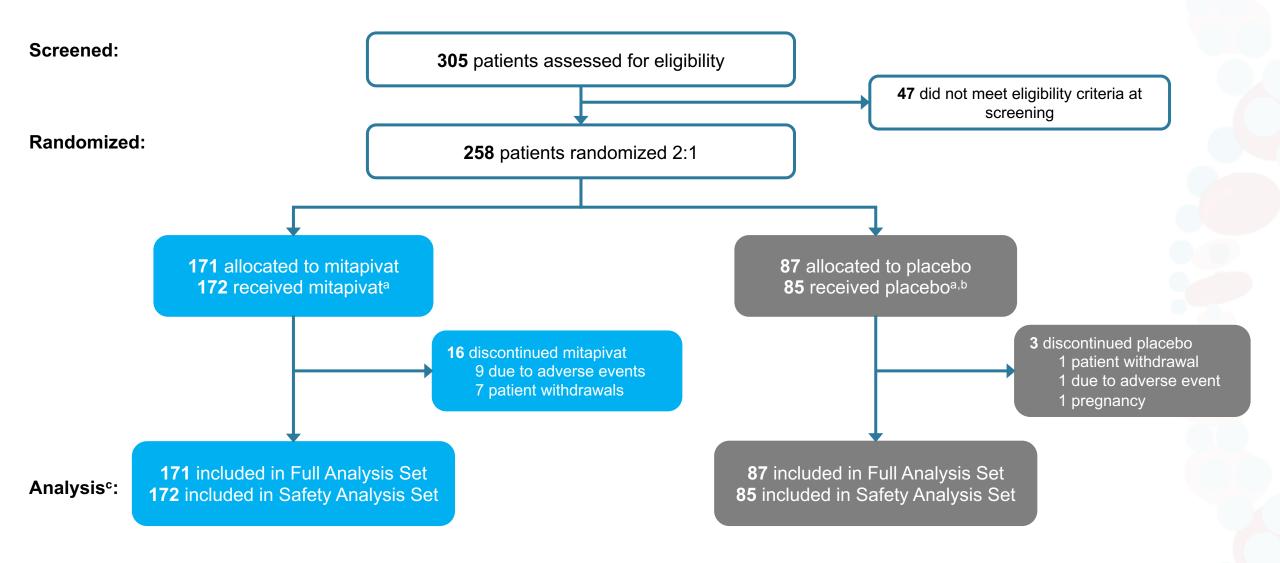
- TRR2, defined as a ≥50% reduction in transfused RBC units in any consecutive 24-week period through Week 48 compared with baseline
- TRR3, defined as a ≥33% reduction in transfused RBC units from Week 13 through Week 48 (fixed 36-week period) compared with baseline
- TRR4, defined as a ≥50% reduction in transfused RBC units from Week 13 through Week 48 (fixed 36-week period) compared with baseline

Other secondary efficacy endpoints included:


Transfusion independence, defined as transfusion-free for ≥8 consecutive weeks through Week 48


Safety endpoints:

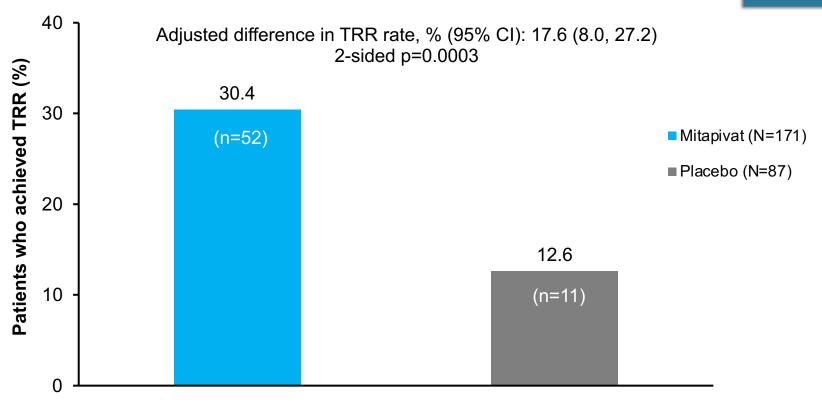
Type, severity, and relationship of adverse events and serious adverse events


Primary and key secondary endpoints^a

Patient disposition: 258 patients were randomized in the study

^aOne patient, randomized to placebo, received mitapivat and was classified in the mitapivat group in the Safety Analysis Set. ^bOne patient was randomized but not dosed. ^cFull Analysis Set: All patients randomized. Patients were classified according to the randomized treatment group. Safety Analysis Set: All patients who received ≥1 dose of study treatment. If a patient randomized to placebo received ≥1 dose of mitapivat in the double-blind period, then the patient was classified to the mitapivat group.

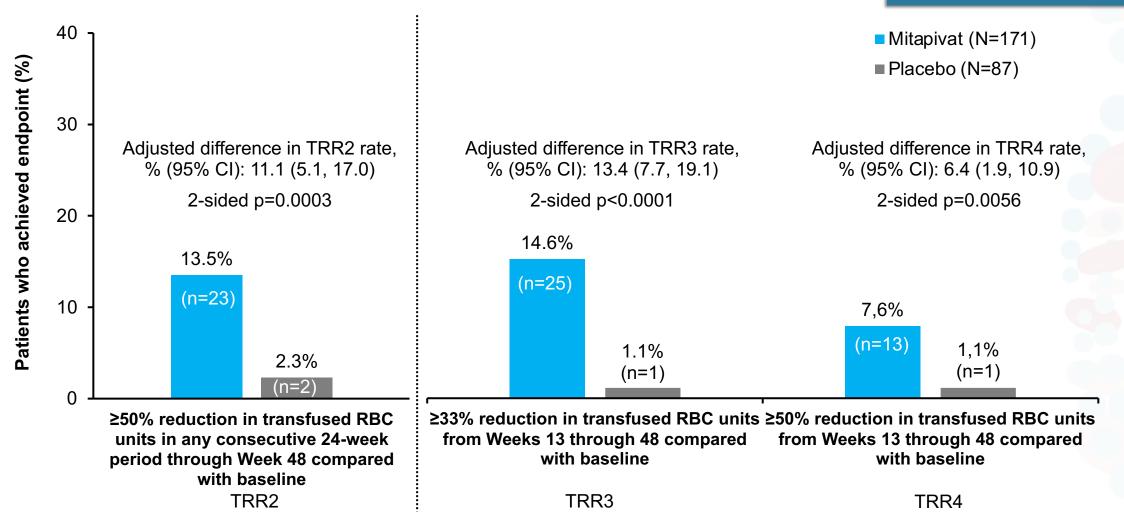
Baseline demographics and disease characteristics


Demographics and disease characteristics	Mitapivat (N=171)	Placebo (N=87)
Age, mean (SD), years	35.8 (11.6)	34.7 (9.8)
Female, n (%)	93 (54.4)	43 (49.4)
Race, n (%) White Asian Black or African American Multi-racial Unknown Not reported	99 (57.9) 56 (32.7) 1 (0.6) 2 (1.2) 7 (4.1) 6 (3.5)	56 (64.4) 22 (25.3) 1 (1.1) 0 (0.0) 3 (3.4) 5 (5.7)
Thalassemia genotype, n (%) Non- β^0/β^0 a β^0/β^0 b	96 (56.1) 75 (43.9)	48 (55.2) 39 (44.8)
24-week transfusion burden ^c , n (%) ≤12 RBC units >12 RBC units	54 (31.6) 117 (68.4)	21 (24.1) 66 (75.9)
Pretransfusion Hb threshold ^d , median (range), g/dL	9.0 (5.1–11.8)	8.9 (5.1–10.9)
Prior splenectomy ^e , n (%)	92 (53.8)	49 (56.3)
Received iron chelation in prior year ^f , n (%)	165 (96.5)	87 (100.0)
Geographic region, n (%) North America and Europe Asia-Pacific Rest of the world ⁹	106 (62.0) 31 (18.1) 34 (19.9)	54 (62.1) 16 (18.4) 17 (19.5)

No statistical comparisons were made between treatment groups for baseline demographics and disease characteristics. ^aPatients who do not have a β⁰ mutation at both alleles of the β-globin gene including patients with HbE/β-thalassemia and α-thalassemia/HbH disease. ^bPatients who have a β⁰ mutation at both alleles of the β-globin gene. ^cTotal number of RBC units transfused in the 24-week period before randomization. ^dPretransfusion Hb threshold was defined as the mean of all documented pretransfusion Hb concentration values recorded for the RBC transfusions administered during the 24-week period before randomization. ^eAs recorded in medical/surgical history eCRF. ^fAs recorded in disease characteristics eCRF. 'Yes' if a patient received chelation therapy within 1 year (365 days) before randomization. ^gRest of the world included Latin America and the Middle East. eCRF, electronic case report form; Hb, hemoglobin; HbE, hemoglobin E; HbH, hemoglobin H; RBC, red blood cell; SD, standard deviation. Cappellini MD et al. Oral presentation at the American Society of Hematology Annual Meeting and Exposition 2024, San Diego.

Mitapivat met the primary endpoint and demonstrated a statistically significant reduction in transfusion burden vs placebo

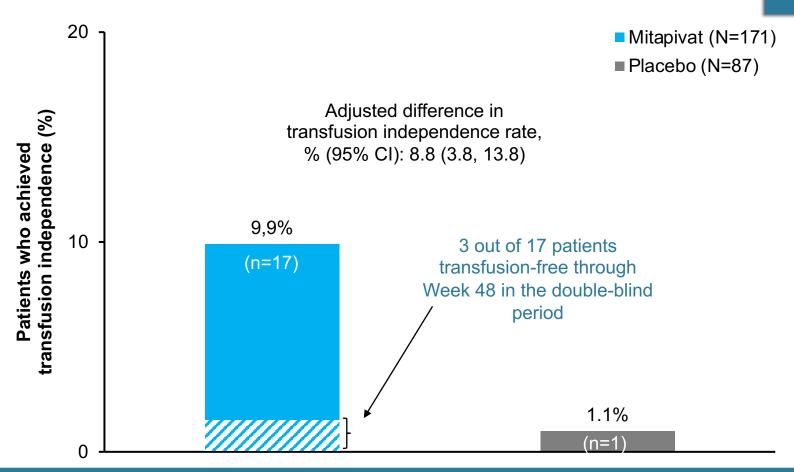
Primary endpoint


TRR was defined as a ≥50% reduction in transfused RBC units and a reduction in ≥2 units of transfused RBCs in any consecutive 12-week period through Week 48 compared with baseline

Analysis conducted on Full Analysis Set. Baseline transfusion burden standardized to 12 weeks=total number of RBC units transfused during the 24-week period (168 days) before 'reference date' ×12/24, where 'reference date' is the randomization date for subjects randomized and not dosed or the start of study treatment for subjects randomized and dosed. Subjects withdrawn from the study before Week 12 (Day 85) are considered non-responders. CI, confidence interval; RBC, red blood cell; TRR, transfusion reduction response.

Mitapivat also demonstrated statistically significant reductions in transfusion burden vs placebo as measured by all key secondary endpoints

Key secondary endpoints



Analysis conducted on Full Analysis Set. 24-week baseline transfusion burden=total number of RBC units transfused during the 24-week period before 'reference date', where 'reference date' is the randomization date for patients randomized and not dosed or the start of study treatment for patients randomized and dosed. Patients withdrawn from the study before Week 24/Week 48 were considered non-responders for TRR2, TRR3, and TRR4, respectively (per protocol). CI, confidence interval; RBC, red blood cell; TRR, transfusion reduction response.

A higher proportion of patients in the mitapivat group achieved transfusion independence vs placebo

Secondary endpoint

Transfusion independence was defined as transfusion-free for ≥8 consecutive weeks through Week 48 in the double-blind period

Summary of safety

Safety

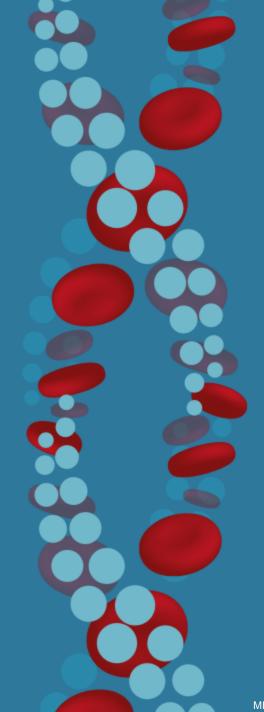
Patients, n (%)	Mitapivat (N=172)	Placebo (N=85)
Any TEAEs	155 (90.1)	71 (83.5)
Grade ≥3 TEAEs	32 (18.6)	12 (14.1)
Treatment-related TEAEs	65 (37.8)	16 (18.8)
Grade ≥3 treatment-related TEAEs	13 (7.6)	1 (1.2)
Serious TEAEs	19 (11.0)ª	13 (15.3) ^b
Serious treatment-related TEAEs	4 (2.3)	1 (1.2)
TEAEs leading to discontinuation of study drug	10 (5.8) ^c	1 (1.2) ^d
TEAEs leading to dose reduction	20 (11.6)	2 (2.4)
TEAEs leading to interruption of study drug	13 (7.6)	5 (5.9)
TEAEs leading to death	0 (0.0)	0 (0.0)

Analysis conducted on Safety Analysis Set. CTCAE v4.03 used. aSerious TEAEs with mitapivat were gastroenteritis (in 2 patients), pneumonia, COVID-19 pneumonia, cellulitis, dengue fever, influenza, lower respiratory tract infection, hypersplenism, mesenteric lymphadenitis, pancytopenia, cholecystitis, acute cholecystitis, supraventricular arrythmia, supraventricular tachycardia, radius fracture, proctitis, asthenia, hepatic cancer, dizziness, renal mass, and ruptured ovarian cyst (all in 1 patient each). bSerious TEAEs with placebo were pneumonia (in 2 patients), viral infection, splenic hematoma, cholecystitis, acute cholecystitis,

Most frequently reported (≥10%) TEAEs

Safety

	Mitapivat (N=172)		Placebo (N=85)	
Preferred Term, n (%)	Any Grade	Grade ≥3	Any Grade	Grade ≥3
Headache	46 (26.7)	0 (0.0)	10 (11.8)	0 (0.0)
Upper respiratory tract infection	27 (15.7)	0 (0.0)	14 (16.5)	0 (0.0)
Initial insomnia	24 (14.0)	3 (1.7)	4 (4.7)	0 (0.0)
Diarrhea	19 (11.0)	0 (0.0)	7 (8.2)	0 (0.0)
Fatigue	18 (10.5)	0 (0.0)	2 (2.4)	0 (0.0)



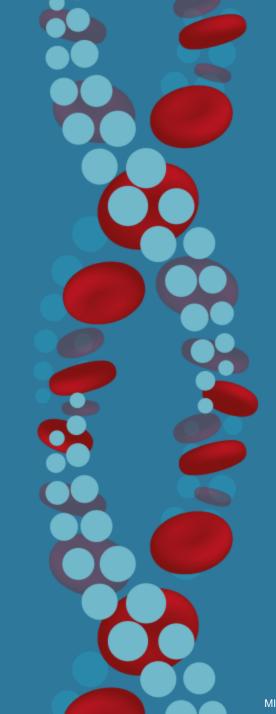
ENERGIZE-T: Summary

- The primary and all key secondary endpoints of the study were met; mitapivat led to significant reductions in transfusion burden, with durability of response up to 36 weeks during the 48-week double-blind period
- A higher proportion of patients in the mitapivat group achieved transfusion independence compared with the placebo group; 3 patients in the mitapivat group were transfusion-free through Week 48 of the double-blind period
- The most frequently reported TEAEs with mitapivat were headache, upper respiratory tract infection, initial insomnia, diarrhea, and fatigue
- Mitapivat was generally well tolerated in this study, with a low treatment discontinuation rate

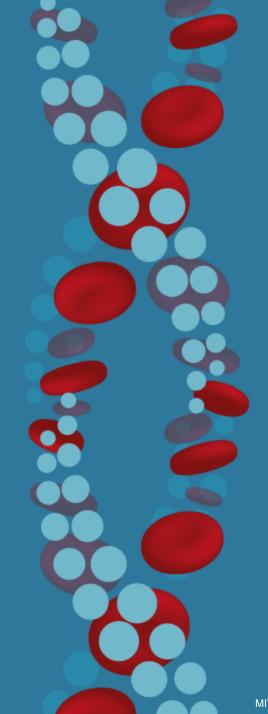
Closing Remarks

Maria Domenica Cappellini, MD, FRCP, FACP University of Milan, Ca' Granda Foundation IRCCS Maggiore Policlinico Hospital, Milan, Italy

ENERGIZE and **ENERGIZE-T** summary


- The ENERGIZE and ENERGIZE-T program enrolled a population representative of the overall thalassemia population globally, encompassing thalassemia across genotypes and transfusion needs (total enrollment: N=452)¹⁻³
- Both studies achieved the primary and all the key secondary endpoints, demonstrating benefit of mitapivat over placebo^{1–3}
- Overall, the incidence of AEs was similar for patients on mitapivat and patients on placebo.
 There were 4.7% (n=14) of patients on mitapivat and 0.7% (n=1) of patients on placebo with TEAEs leading to treatment discontinuation across the 2 studies^{1–3}
- During the double-blind periods, 2 patients on mitapivat experienced events of hepatocellular injury.
 During the open-label extension period, 3 patients experienced events of hepatocellular injury after switching from placebo to mitapivat⁴
 - All events occurred within the first 6 months of exposure. Liver tests improved following discontinuation of mitapivat⁴

Mitapivat may represent a disease-modifying therapy with the potential to impact the underlying drivers of thalassemia regardless of genotype or transfusion burden


Thank you to all the patients, family, caregivers, investigators, and their teams for participation in the ENERGIZE and ENERGIZE-T studies

The full list of the study investigators can be found via the QR code:

Supplemental Materials

ENERGIZE study investigators

Study countries	Principal study investigators	Study sites
	Sandra Loggetto	Banco de Sangue de Sao Paulo
	Vitor Mauad	Praxis Pesquisa Medica
Brazil	Sandra F. Menosi Gualandro	Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo
	Guilherme Rasia Bosi	Universidade de Caxias do Sul
	Viviani de Lourdes Rosa Pessoa	HEMORIO Instituto Nacional de Hematologia
	Ana Silva Pinto	Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo
	Lachezar Bogdanov	University Multiprofile Hospital for Active Treatment "Dr. Georgi Stranski" EAD
Dulmovio	Penka Ganeva	Specialized Hospital for Active Treatment of Hematological Diseases EAD
Bulgaria	Pencho Georgiev	University Hospital for Active Treatment "Sveti Georgi"
	Desislava Ilieva-Chiviyska	Multiprofile Hospital for Active Treatment "Dr. Nikola Vasilev" AD
	Mariya Todorova	University Multiprofile Hospital for Active Treatment "Prof. Dr. Stoyan Kirkovich" AD
Canada	Kevin H.M. Kuo	Toronto General Hospital
Denmark	Andreas Glenthøj	Rigshospitalet
Eronoo	Pablo Bartolucci	Hôpital Henri Mondor
France	Giovanna Cannas	Hôpital Edouard Herroit – Hospices Civils de Lyon Hôpital 5
Germany	Ferras Alashkar	Universitätsklinikum Essen

Study countries	Principal study investigators	Study sites
	Maria Dimopoulou	Laikon General Hospital
	Eleni Kapsali	University Hospital of Ioannina
Greece	Antonis Kattamis	National and Kapodistrian University of Athens (NKUA) School of Health Sciences
	Alexandra Kourakli-Symeonidis	University General Hospital of Patras
	Efthymia Vlachaki	General Hospital of Thessaloniki "IPPOKRATIO"
	Elena Cassinerio	Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico
	Francesca Ferrara	AOU di Modena
	Giovanni B. Ferrero	Azienda Ospedaliero – Universitaria San Luigi Gonzaga
	Manuela Balocco (replacement) Gian L. Forni	Ente Ospedaliero Ospedali Galliera
Italy	Filomena Longo	Azienda Ospedaliero-Universitaria di Ferrara – Arcispedale Sant'Anna
	Raffaella Origa	Ospedale Pediatrico Microcitemico "A.Cao"
	Domenico Pastore	Azienda Sanitaria Locale – Stabilimento "Di Summa – Perrino"
	Silverio Perrotta	Azienda Ospedaliera Universitaria – Universita degli Studi della Campania "Luigi Vanvitelli"
	Paolo Ricchi	Azienda Ospedaliera di Rilievo Nazionale "Antonio Cardarelli"
Lebanon	Ali Taher	Chronic Care Center – Hazmieh

Study countries	Principal study investigators	Study sites
	Zulaiha Binti Muda	Hospital Tunku Azizah
	Ai-Sim Goh	Hospital Pulau Pinang
	Ahlam-Naila Kori	Hospital Tengku Ampuan Afzan
	Lily Lee Lee Wong	Hospital Queen Elizabeth
Malaysia	Tze S. Leong	Hospital Umum Sarawak
	Christopher C.K. Liam	Hospital Sultanah Aminah
	Soo Min Lim	Hospital Sultanah Aminah
	Hong K. Liew	Hospital Sultanah Bahiyah
	Veena Selvaratnam	Hospital Ampang
	Bart J. Biemond	Amsterdam UMC – Locatie VUmc
Netherlands	Anita Rijneveld	Erasmus MC
	Eduard van Beers	Van Creveldkliniek – Universitair Medisch Centrum Utrecht
	Abdulrahman Al Raizah	King Abdulaziz Medical City – Riyadh
Saudi Arabia	Nawaf Alanazi	National Guard Health Affairs – King Abdulaziz Hospital – Al Ahsa
	Farjah Algahtani	King Saud University
	David Beneitez Pastor	Hospital Universitario Vall d'Hebron
Spain	Marta Morado Arias	Hospital Universitario La Paz
	Salvador Payan-Pernia	Hospital Universitario Virgen del Rocío
	Eduardo Salido Fierrez	Hospital Universitario Virgen Arrixaca

Study countries	Principal study investigators	Study sites
Taiwan	Meng-Yao Lu	National Taiwan University Hospital
Idiwaii	Ching-Tien Peng	China Medical University Hospital
	Suradej Hongeng	Ramathibodi Hospital
	Tontanai Numbenjapon	Phramongkutklao Hospital
	Kittiphong Paiboonsukwong	Nakhon Pathom Hospital
Theiland	Adisak Tantiworawit	Maharaj Nakorn Chiang Mai Hospital
Thailand	Nattiya Teawtrakul	Srinagarind Hospital
	Noppacharn Uaprasert	King Chulalongkorn Memorial Hospital
	Vip Viprakasit	Siriraj Hospital
	Peerapon Wong	Naresuan University Hospital
	Ali B. Antmen	Acibadem Adana Hospital
	Yesim Aydinok	Ege University Medical Faculty Hospital
Tradesse	Zeynep Karakas	Istanbul Universitesi – Istanbul Tip Fakultesi Hastanesi
Turkey	Osman Alphan Kupesiz	Akdeniz Üniversitesi Hastanes
	Goksel Leblebisatan	Cukurova University Balcali Hospital Pediatric Hematology
	Sule U. Cangul	Gevher Nesibe Caddesi Hachette Universitesi Pediatrik Hematoloji
United Avels Fraincts	Fatheya Al Khaja	Latifa Hospital Dubai
United Arab Emirates	Khaled M. Musallam	Burjeel Medical City

Study countries	Principal study investigators	Study sites
	Martin Besser	Cambridge University Hospitals NHS Foundation Trust – Addenbrookes Hospital
	David Mark Layton	Imperial College Healthcare NHS Trust – Hammersmith Hospital
United Kingdom	John Porter	University College London Hospitals NHS Foundation Trust – University College Hospital
	Nandini Sadasivam	Manchester University NHS Foundation Trust – Manchester Royal Infirmary
	Hanny Al-Samkari	Massachusetts General Hospital
	May Chien	Stanford University
	Alexander Glaros	Children's Hospital of Michigan
United States	Srila Gopal	Moores Cancer Center at UC San Diego Health
	Ashutosh Lal	UCSF Benioff Children's Hospital Oakland
	Farzana Sayani	Perelman School of Medicine at the University of Pennsylvania
	Sujit Sheth	Weill Cornell Medicine – New York Presbyterian Hospital
	John Joseph Strouse	Duke University Medical Center

ENERGIZE-T study investigators

Study countries	Principal study investigators	Study sites
	Sandra Fatima Menosi Gualandro	Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo
Brazil	Ana Silva Pinto	Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo, Ribeirao Preto
	Sandra Loggetto	Banco de Sangue de São Paulo, São Paulo
	Lachezar Bogdanov	University Multiprofile Hospital for Active Treatment "Dr. Georgi Stransk" EAD, Pleven
	Penka Ganeva	Specialized Hospital for Active Treatment of Hematological Diseases EAD, Sofia
Bulgaria	Pencho Georgiev	University Hospital for Active Treatment "Sveti Georgi," Plovdiv
Duigaria	Desislava Ilieva-Chiviyska	Multiprofile Hospital for Active Treatment "Dr. Nikola Vasilev" AD, Kyustendil
	Mariya Todorova	University Multiprofile Hospital for Active Treatment "Prof. Dr. Stoyan Kirkovich" AD, Stara Zagora
0l -	Kevin H.M. Kuo	University Health Network – Toronto General Hospital, Toronto
Canada	Natalie Rydz	Heritage Medical Research Clinic, University of Calgary, Calgary
Denmark	Andreas Glenthøj	Rigshospitalet, Copenhagen
	Pablo Bartolucci	Hôpital Henri Mondor, Paris
F	Giovanna Cannas	Hôpital Edouard Herroit – Hospices Civils de Lyon, Lyon
France	Laure Joseph	Hôpital Necker, Paris
	Estelle Jean-Mignard	Hôpital de la Timone, APHM, Marseille
	Ferras Alashkar	Universitätsklinikum Essen, Essen
Germany	Carmen Herling	Universitätsklinikum Leipzig, Leipzig
	Michaela Schwarz	Charité – Universitätsmedizin Berlin, Berlin

Study countries	Principal study investigators	Study sites
	Maria Dimopoulou	Laikon General Hospital, Athens
	Eleni Kapsali	University Hospital of Ioannina, Ioannina
Greece	Antonis Kattamis	Children's Hospital "Aghia Sophia," Pediatric Clinic of National and Kapodistrian University of Athens (NKUA), Athens
	Alexandra Kourakli-Symeonidis Vasiliki Labropoulou	University General Hospital of Patras, Rio
	Efthymia Vlachaki	General Hospital of Thessaloniki "IPPOKRATIO," Thessaloniki
	Elena Cassinerio	Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano
	Francesca Ferrara	Universitaria di Modena Policlinico di Modena, Modena
	Giovanni Battista Ferrero	Azienda Ospedaliero – Universitaria San Luigi Gonzaga, Orbassano
	Manuela Balocco Gian Luca Forni	Ente Ospedaliero Ospedali Galliera, Genova
Italy	Filomena Longo	Azienda Ospedaliero-Universitaria di Ferrara – Arcispedale Sant'Anna, Ferrara
	Raffaella Origa	Ospedale Pediatrico Microcitemico "A.Cao," Cagliari
	Domenico Pastore	Azienda Sanitaria Locale – Stabilimento Ospedaliero "Di Summa - Perrino," Brindisi
	Silverio Perrotta	Azienda Ospedaliera Universitaria – Universita degli Studi della Campania "Luigi Vanvitelli," Napoli
	Paolo Ricchi	Azienda Ospedaliera di Rilievo Nazionale "Antonio Cardarelli"
Lebanon	Ali Taher	Chronic Care Center, Hazmieh

Study countries	Principal study investigators	Study sites
	Zulaiha Binti Muda	Hospital Tunku Azizah (Hospital Wanita dan Kanak-Kanak), Wilayah Persekutuan Kuala Lumpur
	Ai-Sim Goh	Hospital Pulau Pinang, George Town
	Ahlam-Naila Kori	Hospital Tengku Ampuan Afzan, Kuantan
	Lily Lee Lee Wong	Hospital Queen Elizabeth, Kota Kinabalu
Malaysia	Tze Shin Leong	Hospital Umum Sarawak, Kuching
	Soo Min Lim Christopher Chin Keong Liam	Hospital Sultanah Aminah (HSA), Johor Bahru
	Hong Kong Liew	Hospital Sultanah Bahiyah, Alor Setar
	Veena Selvaratnam	Hospital Ampang, Ampang
	Bart J. Biemond	Amsterdam UMC, Noord-Holland
Netherlands	Anita Rijneveld	Erasmus MC, Zuid-Holland
	Eduard van Beers	Van Creveldkliniek – Universitair Medisch Centrum Utrecht, Utrecht
	Abdulrahman Al Raizah	King Abdulaziz Medical City, Riyadh
Saudi Arabia	Nawaf Alanazi	King Abdulaziz Hospital, Al Mubarraz
	Farjah Algahtani	King Khalid University Hospital, Riyadh
	David Beneitez Pastor	Hospital Universitario Vall d'Hebron, Barcelona
Spain	Marta Morado Arias	Hospital Universitario La Paz, Madrid
	Salvador Payan-Pernia	Hospital Universitario Virgen del Rocío, Sevilla
	Eduardo José Salido Fiérrez	Hospital Universitario Virgen Arrixaca, Murcia

Study countries	Principal study investigators	Study sites
	Meng-Yao Lu	National Taiwan University Hospital, Taipei City
Taiwan	Ching-Tien Peng	China Medical University Hospital, Taichung
	Shih-Chung Wang	Changhua Christian Hospital, Changhua City
	Suradej Hongeng	Ramathibodi Hospital, Bangkok
	Tontanai Numbenjapon	Phramongkutklao Hospital, Bangkok
	Kittiphong Paiboonsukwong	Nakhon Pathom Hospital, Phutthamonthon
Thailand	Adisak Tantiworawit	Maharaj Nakorn Chiang Mai Hospital, Chiang Mai
THAIIAHU	Nattiya Teawtrakul	Srinagarind Hospital, Khon Kaen
	Noppacharn Uaprasert	King Chulalongkorn Memorial Hospital, Bangkok
	Vip Viprakasit	Siriraj Hospital, Bangkok
	Peerapon Wong	Naresuan University Hospital, Phitsanulok
	Ali Bulent Antmen	Acibadem Adana Hospital, Seyhan, Adana
	Yesim Aydinok	Ege University Medical Faculty Hospital, Bornova, Izmir
Turkey	Zeynep Karakas	Istanbul University – Istanbul Medical Faculty Hospital, Istanbul
Turkey	Osman Alphan Kupesiz	Akdeniz University Medical Faculty Hospital, Konyaalti, Antalya
	Goksel Leblebisatan	Cukurova University Balcali Hospital, Saricam, Adana
	Sule Unal Cangul	Hacettepe University Medical Faculty, Altindag, Ankara
United Arab Emirates	Khaled M. Musallam	Burjeel Medical City, Abu Dhabi

Study countries	Principal study investigators	Study sites
	David Mark Layton	Imperial College Healthcare NHS Trust – Hammersmith Hospital, London
United Kingdom	John Porter	University College London Hospitals NHS Foundation Trust – University College Hospital, London
	Hanny Al-Samkari	Massachusetts General Hospital, Boston, MA
	May Chien	Stanford University, Clinical & Translational Research Unit (CTRU), Palo Alto, CA
	Erica Esrick	Boston Children's Hospital, Boston, MA
	Kleber Yotsumoto Fertrin	Fred Hutchinson Cancer Center, Seattle, WA
	Alexander Glaros	Children's Hospital of Michigan, Detroit, MI
United States	Srila Gopal	Moores Cancer Center at UC San Diego Health, La Jolla, CA
	Ashutosh Lal	UCSF Benioff Children's Hospital, Oakland, CA
	Farzana Sayani	University of Pennsylvania Perelman Center for Advanced Medicine, Philadelphia, PA
	Sanjay Shah	Phoenix Children's Hospital, Phoenix, AZ
	Sujit Sheth	Weill Cornell Medicine – New York Presbyterian Hospital, New York, NY
	John Joseph Strouse	Duke University Medical Center, Durham, NC